NASA-CR-190845

/N3 2 e

Implementing System Simulation of piG R=625
C? Systems Using Autonomous Objects 2/ /37

by /9 é
Ralph V. Rogers
Department of Industrial Engineering and Management System
University of Central Florida
P.O. Box 25000
Orlando, FL
328164450

ABSTRACT

The basis of all conflict recognition in simulation is a common
frame of reference. Synchronous discrete-event simulation relies
on the fixed points in time as the basic frame of reference.
Asynchronous discrete-event simulation relies on fixed-points
in the model space as the basic frame of reference. Neither
approach provides sufficient support for autonomous objects.
The use of a spatial template as a frame of reference is
proposed to address these insufficiencies. The concept of a
spatial template is defined and an implementation approach
offered. Discussed are the uses of this approach to analyzes the
integration of sensor data associated with g’ systems.

E
INTRODUCTION

The analysis of Command, Control and Communication (C’)
systems requires an efficient, safe, and cost effective mechanism
to investigate the effects of new technologies, control strategies,
and tactics on system goals and performance. The mechanism
of choice is computer simulation.  Unfortunately, the
fundamental modeling paradigms of current simulation
modeling practices do not support integration of a wide range
of phenomena of interest in a single model. As a result,
multiple simulation models are used. Each such model relies on
the modeling paradigm most compatible with the phenomena
under consideration. Integrating the results from such multiple
models requires artful and experienced analysts.

The major shortcoming of this multiple modeling approach is
the inability to focus on the interaction of many differing
phenomena. For example, consider the following situation of
interest. New satellite navigation systems have become available
for aircraft use. Their accuracy and precision are well
established. Several airlines and some private aircraft are
equipped with the new system.  Additionally, current
VOR/DME systems are still in effect and used gn all IFR
aircraft even those with the new satellite navigation system.
The general accuracy and precision of these systems are also
well known as well as their areas of coverage. Other sensors
such as radar and secondary radar (i.. transponder) are
available to the air traffic controller. These sensors’ arcas of

coverage and accuracy are also known. Additionally, the pilot of
each aircraft can report her position as they understand it to the
controller. The controlier, likewise, can report the location of
the aircraft to the pilot as the controller understands it. The
question of interest is: given a percentage of both commercial
and private aircraft with the satellite navigation system, what is
the effect on overall separations between aircraft and between
aircraft and ground objects? Associated with this question is the
establishment of the rules/procedures for information fusion
from all the possible sources of information for both pilot and
controller. This is especially of concern because of non-
overlapping blind areas among the various sensors and
navigation systems. In effect, the information fusion
rule/procedures become the independent variables of this model
along with the percentage mix of satellite navigation equipped
and non-equipped aircraft.

Implementing this scenario with the existing simulation
paradigms of continuous, synchronous, and asynchronous
modeling would be, at best, very difficult. The current
paradigms simply do not lend themselves to modeling such a
situation. Continuous simulation modeling could not support the
complex of objects and spatial environment of this scenario.
Synchronous modeling would be overwhelmed by the extensive
overhead necessary to create and execute the model.
Asynchronous modeling could not effectively or efficiently
capture the strong spatial performance measures associated with
this scenario. Moreover, each paradigm faces other lesser
problems in implementing the situation presented. What is
required is a simulation modeling paradigm which is supportive
of the situations described above. The simulation modeling
paradigm offered for this purpose is object-oriented modeling
with autonomous objects.

AUTONOMOUS OBJECTS

Autonomous objects posses full freedom of movement and
decision making within a simulation model. Autonomous objects
may alter their temporal and spatial goal trajectories conditional
upon their current state and the state of the rest of the system.
Autonomous Object positional accuracy can be arbitrarily
precise within a model. Autonomous objects are obviously
desireable in modeling and simulating C* systems. Such objects

(NASA-CR-190845)

IMPLEMENTING

SYSTEM SIMULATION OF C3 SYSTEMS
USING AUTONCMODUS OBJECTS

(University of Central Florida)

o p

Unclas

N33-11716



(X,.Y;)
OBJECT |

OBJECT 2

s 4Y)

’ 3 ei‘
(X, Y,) ¢ 1]
r'\J 24! k7Y 1

| ==

,,,/ A l/

(X,.Y,) )

x/

(X,.Y,)

(x, €5

x’

Figure 1. Object trajectory and coordination in a
synchronous DES.

objects more closely approximate the highly independent and
dynamic behavior associated with the constitutes of a c
environment such as aircraft and surface ships. However,
implementing autonomous objects into C? simulation models is
typically achievable only through limited hybridization of two
competing simulation  modeling paradigms--continuous
simulation and discrete-event simulation (DES).

Autonomous objects are generally associated with continuous
simulation models of relatively narrow environments composed
of small numbers of autonomous objects. Continuous model are
typically composed of a number of differential equations which
are solved numerically. However, in dense, highly dynamic,
complex environments involving multiple autonomous objects
such as C® systems, the modeling and computational resource
demands of such models generally limit their use. The DES
approach offers a more computationally efficient approach.
However, current approaches for incorporating autonomous
objects into DES models relies on integrating continuous
simulation approaches into the DES environment. While this
hybridization provides some added capabilities, it also is
computationally limited in the number of autonomous objects
it can efficiently manage.

The key challenge hindering further use of autonomous objects
in DES based C* simulations surrounds establishing common
reference frames and referencing methodologies for object
decision making (i.e. object coordination). This paper discusses
the concept of object coordination and offers an approach (o
coordination which increases the utility of autonomous objects
in DES C* models.

Figure 2. Object trajectory and coordination in an
asynchronous DEVS model.

AUTONOMOUS OBJECTS IN DES

The two established methods of DES modeling are synchronous
and asynchronous modeling. In synchronous simulation
modeling, time is advanced in fixed increments. The model is
examined only at regular intervals defined by the time
increment used. At every advance of the clock, the state of
each object, entity and process in the simulation must be
updated. Conflicts and resolution must be identified and actions
implemented. Conditional operational decisions are made (and
coordinated) at these fixed time intervals. The reference for
coordination of object actions is the common time defined by
the increment. Synchronous modeling is an advantageous
approach when it is desired for a certain event to occur when
a particular condition is satisfied (or identified). Figure 1
provides a graphical illustration of the synchronous approach for
two autonomous objects moving through a plane. Notice that
each object must establish its relationship to the other object at
each clock increment At. Synchronous modeling has three major
disadvantages. First, such models are hard to implement in
software. Second, nonsimultaneous events may be treated as
simultaneous causing priority and sequencing problems. Third,
to obtain sufficiently accurate performance measures, it may be
necessary to make At very small. As At decreases, the number
of times the model must be updated (and objects synchronized)
increases. This increased updating also increases the
computational resources and time required to exercise the
model {1].

In asynchronous simulation modeling, the next scheduled event
(ie. state change) defines the next increment of time that
advances the clock. Event can occur at anytime. Thus, objects



Y Y; &y
(X,.Y,) Vi &y
OBJECT ! :i :z N
OBJECT |
(X,.Y,)
BJE
C,
; xi{v,) “;zil.} J‘, 5 OBJECT 2 \
ol 4 & Yy Ay
H Y; Ay / ™
Y; :y
4 12 ;&
(X,.Y)) { i ] X, X X, %,
" |
eIJ ell el! eI\
Figure 3. Autonomous objects in DES. Figure 4. Spatial Blackboard with object trajectory
polygons.

may have their states updated at different times and the
resulting increments between time advances may vary widely
through the course of a simulation exercise. However, a
common reference is still required to identify and resolve
conflicts and other interactions between objects (i.c.
coordination). Such coordination of object interactions and
dependencies in an asynchronous modeled system requires
operational decision points. These decision points are not fixed
in time as in synchronous simulation. Instead, they are fixed in
model space. That is, the asynchronous solution to model object
management is to fix the decision points in model space thereby
fixing the spatial increments of the model. Conditional decision
are normally triggered by the arrival of objects or entities to
some point in the model space. Conditions referenced to
simulated time may be difficult or impossible to implement
correctly in an asynchronous model because the mode] may not
recognize that the condition is true until the next event occurs.
By that time, the condition may be false again [1].

The underlying paradigm of asynchronous modeling is node and
arc networks. Nodes represent decision points and arcs
represent specific distances and/or time. Conflicts are resolved
at the nodes. Thus, the frame of reference for asynchronous
modeling is the fixed network nodes or similar simulation
construct corresponding to fixed points in model space.

Figure 2 provides a graphical illustration of the corresponding
asynchronous simulation of two objects moving on a plane.
Note that the trajectory paths are explicitly defined as part of
the model. The coordination point for the two objects is point
XY, of X-Y plane. In this case, the decision or control logic
must only consider the objects and interactions associated with
and prior to events e, and e;,.

Figure 2 also illustrates the difficulty confronting autonomous
object implementation in asynchronous simulation. Autonomous

objects by definition must have the freedom to modify their
trajectory through model space, to go where their goals and
operational rules specify. However, to coordinate the actions of
these or any objects, some common reference frame must be
established. Figure 3 illustrates this problem for autonomous
objects in an event driven simulation. In this example the
objects schedule their next event (i.e. an arrival) some time in
the future (1, and t,). However, with no common points defined
for them in the model in either time or space, there is no
mechanism for coordinating object decision making.

What is desired is to allow each autonomous object to schedule
its next event anywhere in the model space its operational rules
permit, determine if there are any conflicts with any other
objects in the model in achieving that next event, and
implement conflict resolutions strategies among objects when

necessary. How objects recognize and resolve conflicts are the
basic issues of to be addressed in implementing autonomous
objects in DES models. General strategies for these resolving
these issues are discussed in the following.

CONFLICT IDENTIFICATION STRATEGIES

A simple strategy requires each object to schedule its next
model space position ( and associated event) according 1o its
own objectives. The object would then poll ever other object in
the model to determine if the newly scheduled event would
precipitate any conflicts. Conflicts would be resolved based upon
the mode!’s conflict resolution procedures. This is similar to the
general approach used in synchronous modeling.

Unfortunately, such a simple conceptual strategy suffers from
the same basic demand for computational resources as the
synchronous modeling. Moreover, computational resource
demand grows with at least the square of the number of objects



POSSIBLE CONFLICT

r

Figure 5. Example spatial template and polygons.

in the model. What is needed is an approach which enabies
conflict recognition between objects while minimizing the
number of objects and number of communication channels and
interchanges which must be maintained between objects.

The conflict identification strategy pursued in the author’s
research uses the concept of a spatial template. Under this
concept, all objects in the model space are represented as
geometric shapes. To simplify, all object model shapes are
polygons. Dynamic objects (e.g. airplanes, ships, guided
vehicles, weather, etc.) are also represented by polygons but
polygon size and shape is based on the objects model space
trajectory. The parameters of the associated polygon of the
dynamic objects in the spatial template are defined by the
originating object event and the next scheduled event for that
object as well as unique characteristics of the object.

For example, the trajectories of the two objects of the previous
discussions could be represented as two polygons in the X-Y
plane of their movement. The origin of Object 1’s trajectory is
point X,,Y; and the end of its trajectory is point X,,Y,. These
points correspond to events e, and e, ,. Similarly for Object 2,
its origin and end points are X, Y;and X,)Y,, respectively. The
corresponding events are e, and e, The polygons on the
spatial template for each of these objects could be defined by
the origin and end points and by a Ay for each object. Thus, a
polygon representative of Object 1 would be defined by the four

Figure 6. Sectors overlaying spatial template.

poims (XI,Y1+ Ay), (X,,Y,-Ay), (x;,Yz+ Ay), and (Xz,YrAy). A
polygon representation of Object 2 would be defined by the four
points (X,,Y,+Ay), (X5,Yy-4y), (X, Y,+4y), and (X, Y.-AY).
The two corresponding polygons and spatial template are
illustrated in Figure 4.

This static representation in two dimensions implies a third
dimension (time) by the extent of the polygon from the point of
the arrival event. This static representation may also be
regarded as a most probable model space trajectory for the
object. Uncertainty in the proposed model space trajectory may
be reflected in the shape and extent of the object polygon (e.g.
the Ay's). Figure 4 illustrates this concept. Potential conflicts are
identified when the representational polygons of objects
intersect. Once intersection is detected, objects may then
resolve conflicts. Clearly, the key methodological issues are
associated with how to efficiently identify polygon intersections
in the spatial template.

The problem of how to determine if any two geometric objects
intersect in a given coordinate system is a well known and
widely addressed problem. Efficient and easily implementable
methodologies are readily available. The problem with polygon
intersection detection for the spatial template approach is the
determination of what is an cfficient way to identify which
objects should be tested to determine if they intersect? Testing
between all objects in the system every time a new event is



Figure 7. Spatial Template with Sector queues.

scheduled merely recasts the problems of synchronous modeling.

The spatial template is fundamentally concerned with the
identification of the Potential conflicts. That is, to identify those
objects whose model space trajectories may compete for the
same model space resources (e.g. space) at the same time. The
goal is to reduce the message traffic between model objects
necessary to determine if conflicts will occur. The approach
taken is to graphically represent the model space trajectory of
mode! system objects and to identify the intersection of
trajectories before allowing the object to proceed. How to
identify these potential conflicts in an efficient manner is
dependent on the how to represent the model space
information and the object trajectory information associated
with trajectory polygons and scheduled simulation events.

The proposed spatial template approach to representing this
information is to partition a two or three dimensional cartesian
model space into equal sectors. The model space trajectory of
an object represented by its associated polygon is defined within

the model space cartesian coordinate system (See Figure 5) as
discussed before. The Sector partitioning then overlays the
model space cartesian system (See Figure 6). The Sectors are
identified by a coordinate sector numbers (e.g. sector 1,3). The
Sectors through which the trajectory polygon overlays and/or
intersects are identified. Associated with each sector then is a
list of objects whose trajectory is schedule to go through some
part or all of that sector (See Figure 7). When new object
trajectories are added to a the sector list, a check is made to
determine if any other object trajectories are also associated
with that Sector. If an object trajectory is already associated
with a Sector, then a potential conflict exists. When potential
conflicts are identified, the model communicates with each
object in the identified Sector to determine if an actual conflict
exists. When conflicts do exist, the model may then employ its
conflict resolution strategies to remove the conflict.

The data structure employed to maintain the list of objects
associated with spatial template Sectors is a dynamic array of
queves. The Sectors of the model space become elements in
the array. Each element in the array is & queue. As object
trajectories cross a sector, the name of the object is added to
the sector (i.e. queue). Once a new model trajectory has been
established for an object, the name of the object is remove from
the sectors associated with the old object trajectory.

In the object-oriented software implementation, each sector
element is defined as a queue object. The use of objects to
describe sectors enables the exploitation of a dynamic array. A
dynamic array will only use the memory necessary for the active
sector objects. Thus, if no sectors have objects associated with
them, they are not created, and do not require computational
resources. Likewise, as a sector becomes empty, that sector
object may be disposed of, freeing computational resources.

Implementing the spatial template as described above ina DES
provides an approach which supports autonomous object
modeling. The spatial template approach reduces the
coordination overhead required for autonomous objects in both
synchronous and asynchronous simulation. Practical
programming considerations dictate an object oriented approach
is required for the software implementation.

C? MODELING IMPLICATIONS OF
AUTONOMOUS OBJECTS

The use of autonomous objects and the object oriented
modeling paradigm in general would allow the capture of the
scenario described earlier. Sensors could be modeled as just
another unique object in the model. A radar, for example,

would define its pattern search with a polygon on the spatial
template (Figure 8). Aircraft identified within the polygon
pattern would be asked to report their true position and altitude
in the model space. The sensor would then correct for blind
areas and altitude. Uncertainty, imprecision, and other
anomalies of the radar performance could be used to modify
the position information before forwarding it on to a controller.
Similarly, information from navigation objects and controller
objects could be provided to a pilot object which may direct the



)/ﬁl SENSOR
D

BLUE / \

X

Figure 8. Radar search patiern with object trajectory
polygons in spatial template.

aircraft object.

Ground obstructions such as buildings, towers, and mountains
could be represented on the spatial template with polygons.
Control strategies by pilots or controllers would respond
accordingly when such ground obstruction were detected. Of
course, flawed strategies could lead to collisions with ground
obstructions or other aircraft.

Building simulation models with autonomous objects in an
overall object-oriented modeling scheme frees the simulationist
from the traditional network paradigm of large system modeling.
In the autonomous object approach, the corresponding
phenomena of interest can be identified with its corresponding
"real-world” manifestation (i.e. object). Modeling autonomous
object includes including the behaviors of interest with the
object model. In traditional DES modeling, the model emphasis
is on external processes which operate ON and implement
changes TO objects of interest. The objects of interest from the
simulation model perspective are little more than tokens with
slots being passed from one location or process to another. The
modeler is required to impose a interpretation of the structure
of the interactions of the model objects when constructing the
model.

Many times in system engineering one is interested in the
overall effect which arises when the behaviors of individual
objects or entities are brought together. The goal is to observe
the structural effects on the system (or the system defined) by
individual objects pursuing their own goals as dictated by their
own behaviors and goals. In traditional system/process
modeling the system structure is assumed in the modeling
process. Only the questions of system performance are left to
be resolved. Object modeling with autonomous objects permits
the investigation of the effects on system structure of new
behavior and rules and not just on specific performance
measure of a system operating under assumptions the new
behaviors may undermine.

SUMMARY

Clearly, the use of the object-oriented modeling paradigm
provides a more natural and intuitive modeling approach for C°
systems. Autonomous objects in object models provide the
capability to capture the wide variety of phenomena necessary
to study system interactions in large scale, highly dynamic
environments. Perhaps just as important, autonomous objects
enable the management of technical, site specific data and
operational RULES within a model. Unfortunately, the decision
making frame of references in traditional synchronous and
asynchronous DES modeling severely limit the ability of these
approaches to support autonomous object models.

The spatial template offers a frame of reference which
addresses the limitations of the traditional DES models. Thus,
the spatial template basis of model coordination and the use of
object-oriented software provides & mechanisms for
implementing autonomous objects in a DES modeling paradigm
and computer software. The availability of such simulation tools
has the potential to change the scope and level of discrete event
simulation use in systems analysis, in general, and C* systems
analysis, in particular.

REFERENCES
{1] P. Bratley, B.L. Fox, and L.E. Schrage. A Guide to
Simulation, 2nd ed. New York: Springer-Verlag, 1987.
ACKNOWLEDGEMENTS
This work was supported in part by the Federal Aviation

Administration and the National Aeronautics and Space
Administration under NASA-AMES Grant NAG 2-625.



